

Lukas R. Benzenberg¹ & Paul W. Elsinghorst^{1,2}

introduction

As food is heated to obtain roasting aromas also undesirable contaminants may be formed. As such furan and a variety of substituted furans may arise from Maillard reactions involving proteins, carbohydrates, polyunsaturated fatty acids and/or ascorbic acid. When ingested these furans will be metabolized by cytochrome-P450-monooxygenases like CYP2E1 to reactive α , β -unsaturated carbonyl compounds like *cis*-but-2-ene-1, 4-dialdehyde (BDA), which forms covalent adducts with amino acids, glutathione (GSH) or DNA bases. While the reaction with amino acids or GSH provides a mechanism of detoxification, DNA adduct formation may lead to gene expression alterations, epigenetic changes, inflammation and increased cell proliferation as indirect mechanisms involved in carcinogenesis. A method for the quantification of furan and eight furan derivatives by HS-SPME-GC/MS was developed and applied to a series of coffee products.

						analyte	R_1	R ₂	R_3	R ₄
amino acids carbohydrates polyunsaturated fa ascorbic acid	·····	4-hydroxy-2-butenal		$R_1 $	R_4	furan	Н	Н	Н	Н
	s thermal	aldotetrose derivative	S			2-methylfuran	CH ₃	Н	Н	Н
	ed fatty acids processing	acetaldehyde	`	R _a		3-methylfuran	Н	CH_3	Н	Н
			**	•	1.1.3	2-ethylfuran	C_2H_5	Н	Н	Н
						2,5-dimethylfuran	CH ₃	Н	Н	CH_3
						2,3-dimethylfuran	CH ₃	CH_3	Н	н
	DNA adducts /	DNA bases	C			furfural	COH	н	Н	Н
	carcinogenesis					furfuryl alcohol	CH ₂ OH	н	Н	Н
						2-acetylfuran	COCH ₃	Н	Н	Н
method dev	velopment	detoxification a	mino acids, GSH		/=0		quá	antifi	catio)n
Chromatog separation of fu a challenging ta structural simila	raphic uran derivatives is ask due to their high volation	tility and		BDA		inte stable-isotope-dil	Three d ernal stand ution analy	leuteri ards w sis (SI	um-la vere a IDA) (beled pplied for calibratir
isomers like 2,5 was successful phenyl, 94% po temperature pre	5-dimethylfuran, 2,3-dime Ily achieved on a DB-624 olydimethylsiloxane) with ogram.	thylfuran and 2-ethylfuran column (6% cyanopropyl- a carefully optimized			 furan, 2-i 2-ethylfu 2,5-dime furfural, f 	methylfuran and 3-methylfuran, 2,5-dimethylfuran thylfuran- <i>d</i> ₃	hylfuran us and 2,3 acetylfuran	sing 3- -dimet using	meth hylfur furfur	ylfuran-d [.] an usir [.] al-d ₄ .
rate [°C/min]	temperature [°C]	holdtime [min]	tho		Six-point	calibration curves we	e prepareo	d for ea	ach a	nalyte
/	30	3	Zo	using	six replicate	es of each level $(n = 36)$	6) with grou	und gre	een c	offee as
Α	100	0	5	"ps	seudo-blank	matrix". Tests for norm	ial distribut	tion an	id out	liers we

- > by an increased fiber-penetration-depth of 38 mm during extraction
- \succ when using a 15% NaCl solution as a dispersant (a total of 16 different dispersants was compared, including NaCl solutions of different concentrations and 10 ionic liquids)

application to coffee samples

quantification by SIDA

5 The developed SIDA-HS-SPME-GC/MS method was subsequently applied to a series of coffee samples. High levels of furfuryl alcohol and furfural were observed besides lower levels of furan, 2-acetylfuran and 2-methylfuran. Only 2,3-dimethylfuran appeared consistently below LOQ. Espresso coffee showed notably higher furan levels than all other products, which is in accordance with the more intensive heat treatment during roasting. In contrast, a ready-to-drink cappuccino showed no furans above LOQ most probably because of its significant dilution with milk and water.

> 2-methylfuran 3-methylfuran 2-ethylfuran 2,5-dimethylfuran 2,3-dimethylfuran furfural furfuryl alcohol 2-acetylfuran furan [ng/g] [µg/g] [µg/g] [ng/g] [ng/g] [ng/g] [µg/g] [µg/g] [µg/g]

LOQ ^a	2,86	1,97	393	70,7	171	424	6,40	167	4,73		
ground coffee	3,06	6,07	< LOQ	82,8	476	< LOQ	102	1050	9,98		
espresso coffee	3,98	9,27	437	113	729	< LOQ	67,3	1460	10,6		
soluble coffee	< LOQ	2,90	< LOQ	< LOQ	< LOQ	< LOQ	66,5	579	< LOQ		
coffee pads	< LOQ	3,92	< LOQ	< LOQ	237	< LOQ	88,9	1240	8,77		
coffee capsule	3,68	6,85	< LOQ	83,7	535	< LOQ	112	1560	15,3		
decaff. coffee	3,88	7,92	< LOQ	115	569	< LOQ	96,7	1200	9,07		
cappuccino drink	< LOQ										
$\frac{1}{2}$											

^a according to ISO 11843-2:2000

¹ Zentrales Institut des Sanitätsdienstes der Bundeswehr München, Ingolstädter Landstraße 102, 85748 Garching ² Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Friedrich-Hirzebruch-Allee 7, 53115 Bonn

