

International Symposium on Interaction of the Effects of Munitions with Structures

1997

Blast		
Bergeron, Zhang (F), Walker, Coffey,	Numerical and Experimental Study of In-Soil Explosions	11
CANADA	from a Multiphase Perspective	
Matthews, Ritzel, AUSTRALIA,	A Simple and Tunable Explosion-Source Model for CFD	35
Presented by Bergeron, CANADA	Blast Calculations	
Neuwald, Reichenbach, GERMANY	Small-Scale Detonations in a Generic Single-Story	47
	System - Effect of a Venting Hole on Blast Properties,	
Tournemine, Canton, FRANCE	Computation of Structure Loading Due to Internal	57
	Detonation - Evaluation of Numerical Methods by	
	Comparison with Experimental Data,	

Constitutive Models in Computational Methods		
Murray, USA	Modeling Rate Effects in Rock and Concrete	65
Ito, Muki, USA	Damage Model for Explosive Interaction	79

General Session Part 1		
Thomsen, Rocco, Sheffield, Rinehart,	Calculations of the Blast and Fragmentation Effects of an	101
USA	Aluminized Explosive Charge with a Pre-Scored Case,	
Woodson, Chiarito, USA	Residual Strength of Fragment-Damaged Slabs,	127
Malvar, Wesevich, Crawford, USA	Procedures for Including Fragment Loading and Damage	135
	in the Response Predictions of Reinforced	
	Concrete Slabs	
Tennant, Levine, Mould, USA	Prediction of Static and Dynamic Response of Reinforced	147
	Concrete Slabs Using a Rate-Dependent	
	Three Invariant Softening Model for Concrete	
Buckland, Slater, CANADA	Analysi_s of the Structural Response of a Flat Plate	165
	Target to the Shock and Bubble Loading from Close-	
	Proximity Underwater Explosions,	

General Session Part 2		
Rice, Reinberger, USA	The Protective Structures Automated Design System: A	179
	New Tool for Designing and Analyzing Hardened	
	Structures,	
Smith (Mark D.),	Development of a Comprehensive Weaponeering	185
Biamonte, Sues, USA	Environment Architecture (CWEA),	
Welch, Joachim, Frankel, USA	In-Tunnel Airblast Engineering Model for Internal and	195
	External Detonations,	

Lunderman, Ohrt,	Small-Scale Experiments of In-Tunnel Airblast from	209
Presented by Welch, USA	External and Internal Detonations	
Plamondon, Seemann, USA	Damage to Aboveground Corrugated Steel Siding	223
	Buildings from the Detonation of Mk82 Bombs,	
Stevens, Hogg, Tarbell, Modares, USA	Mechanical Response and Liquid Release	247
	Characteristics of Fragment-Impacted Storage Tanks,	
Al-Hamad, USA	Breakthrough Technology Shields Against Bomb Blast	263
	and Fires,	

Israeli Tests		
Sofrin, Eytan, ISRAEL (Abstract only -	Full Scale Explosive Tests on a 5-Storey Structure -	269
Paper not available for publishing)	General Description and Findings	
Eytan, Sofrin, ISRAEL (Abstract only -	Full Scale Explosive Tests on a 5-Storey Structure -	271
Paper not available for publishing)	Response of Structural Elements,	
Eytan, Sofrin, ISRAEL (Abstract only -	Full Scale Explosive Tests on a 5-Storey Structure -	273
Paper not available for publishing)	Response of Masonry Walls to Blast Loadings,	
Dinan, USA (Paper not available for	Blast Loading and Structural Response of Full-Scale Five	
publishing)	Storey Building	
Schwarz, ISRAEL	Influence of Protected Spaces on Resistance of	275
	Multistorey Buildings Against Blast and Earthquake	
	Loadings	
Whiting. Coltharp, USA	Retrofit Measures for Conventional Concrete Masonry	287
	Unit Buildings Subject to Terrorist Threat,	
Negri, ISRAEL, MacKenzie, UK, Eytan,	The "Maya Durisol" Protective Wall System - Research,	307
ISRAEL	Development, Testing, and Implementation,	

Penetration and Fragments Panel Session		
Young, USA	Penetration Mechanics - An Experimental Perspective,	321
Johnson, USA	Computational Approaches for Penetration Problems,	337

Penetration Part 1		
Green, Hanchak, Frew, Forrestal, USA	Penetration of Concrete Targets with Ogive-Nose Steel	375
	Rods	
Gran, Frew, USA	Measurement and Computation of Dynamic Stresses	391
	During Penetration into Concrete,	
Amini, USA	Engineering Modeling of Projectile Penetration in Layered	403
	Reinforced Media,	
Clegg, Sheridan, Hayhurst, Francis,	The Application of SPH Techniques in AUTODYN-2D™	415
UNITED KINGDOM	to Kinetic Energy Penetrator Impacts on Multi-Layered	
	Soil and Concrete Targets,	
Hierrnaier, Thoma,	Numerical Simulation of Penetration in Concrete Using	425
GERMANY	Different Types of Code	
Heiser, Murek, GERMANY	Hydrocode Calculations of the Penetration of Concrete	435

Penetration Part 2		
Pahl, Heckersbruch, Bucking, Langheim,	Penetration of Fragments into Reinforced Concrete	447
GERMANY	Targets - An Engineering Approach,	
Lee, Thomsen, USA	Generalized Coupling Theory Applied to Fragment	457
	Impact,	
Wiren, Nystrom, SWEDEN	Development of Fragment Protection Shields by Use of	479
	Computer Models and Verification by Tests with EFG-	
	Explosive Fragment Generator,	

Lok, Pei, REPUBLIC OF SINGAPORE	Impact Resistance of SFR Concrete Panels as Influenced by Target Thickness and Steel Fiber	487
	Reinforcement,	
Baum, Kuklo, Rosenbury, Simonson,	Micropower-Impulse Radar Penetration Diagnostic	499
USA	Measurement,	
Pearson, Kvavilashvilli, Neiderer,	Penetration Effects on Urban Structures,	511
Thomas, USA		

Protective Design Panel Session		
Smilowitz, DiMaggio, USA	Current Design Practice for the Blast Protection of	521
	Commercial Structures,	
Balsara, USA	Research on Retrofit Hardening for Conventional	537
	Buildings,	

Protective Design Part 1		
Smith (David)	The Role of the Engineer Before and After Terrorist	569
UNITED KINGDOM	Bombings - The UK Experience	
Gott, Watson UNITED KINGDOM	The Peterborough Explosion - An Analytical Case Study	579
Barker, USA	Test Program for Evaluation of Retrofit Filmed Windows	589
	Subjected to Blast Loads	
Krauthammer, Altenberg, USA,	Negative Phase Blast Effects on Glass Panels	599
EI-Kadi, Iremonger, Kennedy, UNITED	The Influence of Architectural Designs and Features on	609
KINGDOM	the Response of Glazing to Explosive Blast	
Lofton, Smith (Joseph), Walker, USA	Evaluation of Security Window Films Subjected to	619
	Airblast As a Means of Reducing Glass Fragment	
	Hazards	

Protective Design Part 2		
Quinn, Kennedy, Mays, UNITED	The Response of Steel/Concrete Sandwich Panels to	631
KINGDOM	Close-In Explosions,	
Lindqvist, Forsen, SWEDEN, Presented	Combined Effects of Blast and Fragment Loading - Full	641
by Balazs	Scale Experiments with Ordinary Building Walls	
Mayrhofer, GERMANY	Reinforced Masomy Walls Under Blast Loading,	649
Walls, Rose, Smith (PD), Mays,	Blast Attenuation Produced by Partially-Failing Protective	659
UNITED KINGDOM		
Crawford, Bogosian, Wesevich, USA	Evaluation of the Effects of Explosive Loads on Masonry	669
	Walls and an Assessment of Retrofit Techniques for	
	Increasing Their Strength,	
Daddazio, Smilowitz, Ettouney, USA	Blast Protection Schemes for Structural Elements,	687
Lok, Pei, Heng,	Steel Fiber Reinforced Concrete Panels Subjected to	701
REPUBLIC OF SINGAPORE	Blast Loading	

Protective Design Part 3		
Bucher, SWITZERLAND	The Underground Ballistic Test Range for Large Calibre	713
	Weapons in Switzerland: An Overview Over the Facility	
	and the Highly Dynamic Problems to be Solved	
Klomfass, GERMANY	Blast-Solid Interaction in Underground Detonations	721
Chong (Karen), Zhou (Yingxin),	Geometric Configurations for Blast Attenuation	735
SINGAPORE		
Scheklinski-Glück,	A Calculation Program for Blastwave Propagation in	747
GERMANY	Branched Tunnel Systems	

Schwarz, ISRAEL	Membrane Effects Affecting Beams and Plates Subjected	755
	U DIdSt LUdus, Stand off Screen Effects - Droblems of Energy and	745
	Stand-off Screen Effects - Proprents of Effergy and	700
	Nomentum	

Protective Design Part 4		
Merrifield, MacKenzie, UNITED	Methodology for Estimating the Explosion Yield of	773
KINGDOM	Incidents Involving Conventional or Improvised	
	Explosives	
Sanai, Colton, USA	Assessment of Postulated Terrorist Attacks Using	799
	Computer Simulation Techniques and a Fast-Running	
	PC-Based Algorithm,	
Barker, Whitney, USA	Test Program for Blast and Fragment Mitigation System	819
Tünnissen, USA	A Practical View on Shock Isolation	833
Ting, REPUBLIC OF	Blast Tests on Protective Targets: General Observations	841
SINGAPORE	and Conclusions	
Song, Zhang (Xinle), PEOPLES	Absorbing Behavior of Elastic Rubber Material and its	849
REPUBLIC OF CHINA	Design Under Shock Conditions	

Structures Part 1		
Holm, NORWAY	A Method for Predicting Damage by Ground Shock Loads	859
	on Buried Structures,	
Diangha, UNITED KINGDOM (Paper not	Impact Considerations in Structural Design: Provisions	
available for publishing)	for Bridge and Offshore Structures,	
Carl, GERMANY,	Numerical Simulation of the Effects of Contact	871
	Detonations on Concrete Structures,	
Preece, Attaway, Swegle, Koteras,	Coupled Explosive/Structure Computational Techniques	879
Matalucci, USA	at Sandia National Labs	

Structures Part 2		
Simons, Antoun, Curran,	A Finite Element Model for Analyzing the Dynamic	889
USA	Cracking Response of Concrete	
Rozen, Sofrin, Balteano, ISRAEL	Dynamic Response Analysis of a Protective Door	911
van Doormaal, Weerheijm, Absil,	Experimentally Determined Deformation Capacity of	919
NETHERLANDS	Reinforced Concrete Slabs Under Blast Load	
Ettouney, Srnilowitz, Daddazio, USA	Stochastic Behavior of Structures Subjected to	927
	Blast/Fragment Loading	

Structures Part 3		
Binggeli (Ed), Binggeli (F),	Effects of Steel Plates on Airblast Protective Valves,	943
SWITZERLAND		
Krauthammer, Oh, USA	Structural Steel Connections Under Blast Loads,	953
Langberg. NORWAY (Paper not	Airblast Damage to Concrete Structures	
available for publishing)		
Ishikawa, Suzuki, Katsuki, JAPAN	Dynamic Behavior of RC Beams under Rapid Speed	961
	Loading,	
Watson, Hulton, Pope,	An Experimental Study of Steel Plate Bonding to	971
UNITED KINGDOM	Concrete Slabs under Close-In Explosions	

Structures Part 3		
Adeli, Saleh, USA	Active Control of Large Adaptive Structures Subjected to	981
	Dynamic Loadings	
Jiang, Chen,	Bearing Capacity Analysis of Shallow-Buried Slabs in Soil	989
PEOPLES REPUBLIC OF CHINA	under Blast Loading,	
Kraus, Ruppert, GERMANY	Application of Hydrocodes on Structural Concrete -	999
	Experience/Possibilities,	
Wang (Shuangjin), Zhang (Shoubao),	Load on Structures in Soil under Blast Loading,	1009
Zhou (Fengjun), PEOPLES REPUBLIC		
OF CHINA		
Zhang (Ya-Dong), Fang, Wang (Lian-	Rate-Dependent Finite Element Analysis of Buried RIC	1023
Qiao), PEOPLES REPUBLIC OF CHINA	Frames under Blast Loadings,	

Test Part 1		
Ando, Yamaguchi, Hoshikawa, Fujimoto,	Centrifugal Simulation of Underground Structures in	1035
JAPAN	Cohesive Soil Subjected to Blast Loadings,	
Bakhtar, USA	Physical Modeling of Material Behavior from a Tunnel	1045
	Explosion Test at 1-g,	
Dutheil, Riviere, Luong, FRANCE	Simulation of Buried Explosions in Macrogravity,	1065
Anderson, Watson, Gott, UNITED	Development of a Large Diameter Split Hopkinson	1073
KINGDOM	Pressure Bar to Study Compression Wave Transmission	
	Through Soils,	

Test Part 2		
Held, GERMANY	Blast Distribution of Cylindrical High Explosive Charges,	1083
Blackburn, Barker, USA	Test Program for Dynamic Response of Blast Resistant	1099
	Doors,	
Krauthammer, USA	Recent Structural Dynamics Research with Precision	1109
	Impact Tests,	
Johnson, UNITED KINGDOM	The Analysis of Blast Effects on Glazing Test Targets	1117
Pan, Diangha, Watson, Hobbs, UNITED	Experimental Study of a Cladding Fixing Assembly	1133
KINGDOM	Subjected to Impact Loading	
Zhou (Fengiun) Shi PEOPLES	Shockwave and Thermal Radiation Effects from	1141
REPUBLIC OF CHINA	Spherical Explosions,	
Chen, Zhou (Fengjun), Su, PEOPLES	Simulation of Long-Duration and High Overpressure Blast	1151
REPUBLIC OF CHINA	Wave Action Using a Plane Charge	

NATO

NATO Part 1		
Renick, Rinehart, USA	Detonation of Tritonal Explosives Charges in Concrete	1
	Bunkers	
Hookham, Koik, USA	Numeric al Simulations of Coupled Explosion-Structure	23
	Interactions	
Marchand, Bowles, Plenge, USA	Investigation of Combined Blast and Fragment Effects on	35
	Reinforced Concrete Structures: 1996 Tests	
Plamondon, USA	Damage to Reinforced Concrete Wall Slabs from Bomb	61
	Fragment Impact	
Wesevich, Malvar, Crawford, USA	Comparison of Measured and Predicted Responses of	75
	Reinforced Concrete Walls Subjected to	
	Close-In Blasts	
Lewis (Brett).	Use of Elasto -Damage Plasticity Concrete Model for	95
Murray, Lewis (Barbara), USA	Fragment Loading of Structures	

NATO Part 2		
Lavelle, Cesare, Twisdale, USA 103	Optimization of Penetration and Internal Blast Effects with	103
	the Munitions Effects Assessment	
	Software System	
Lavelle, Frank, Twisdale, Smith, USA	Time-Constrained Structural Modeling and Internal Blast	117
	Effects Predictions with the Munitions Effects	
	Assessment Software System,	
Thacker, Oswald,	A Probabilistic Multi-Mode Damage Model for Tunnel	137
Wu, Patterson, Senseny, Riha, USA	Vulnerability Assessment,	
Oakley. Twisdale, Lavelle,	Munitions Effects Assessment Module for Hardened	149
Sues, Frank, USA	Portals and Adits,	
Absil,Verbeek,	Combined Experimental and Numerical Study of Mine	169
NETHERLANDS	Detonations in the Vicinity of Vehicles	
Zimmennan, Akers, USA	A Porosity and Rock-Mass-Quality Dependent Drained	179
	Constitutive Model for Computational Applications	

NATO Part 3		
Goode, UNITED KINGDOM	The Development of Hardened Accommodation Buildings in Northern Ireland,	191
Trundle, UNITED KINGDOM	The Use of High Level Observation Platforms in the Middle Ages and in Modern Times,	205
van Dongen, Kodde, Weerheijm, NETHERLANDS	Validation of Protection Levels of Shelters Currently Used in Bosnia by Dutch IFOR Troops,	217
Lewis (Barbara), Lewis (Brett), USA	Concrete Construction Joint Simulation for Analysis of Structures Subjected to Blast and Fragment Loading,	225
Romander, Gran, USA	Laboratory Investigation of Rock Rubble Produced by Explosive Detonations Near Tunnel Walls in Rock,	231
Windham, Presented by Akers, USA	Analyses of Hoop Stress Predictions in Spherical Flow Fields,	253

Author Index

Absil Adeli Altenberg Al-Hamad Amini Anderson Ando Antoun Attaway Bakhtar Balazs Balsara Balteano Barker Baum Bergeron **Biamonte** Binggeli (Ed) Binggeli (F) Blackburn Bogosian **Bucher** Bucking Buckland Canton Carl Chen Chiarito Chong (Karen) Clegg Coffey Coltharp Colton Crawford Curran Daddazio Diangha DiMaggio

Dutheil Eberle El-Kadi Ettouney Eytan Fang Forrestal Forsen Francis Frankel Frew Fujimoto Gott Gran Green Hanchak Hayhurs t Heckersbruch Heiser Held Heng Hiennaier Hobbs Hogg Holm Hoshikawa Hulton Iremonger Ishikawa Ito Jiang Joachim Johnson Katsuki Kennedy Klomfass Koteras Kraus Krauthammer

Kukla Kvavilashvilli Langheim Lee Levine Lindqvist Lofton Lok Lundennan Luong MacKenzie Malvar Matalucci Matthews Mayrhofer Mays Merrifield Modares Mould Muki Murek Murray Negri Neiderer Neuwald Nystrom Oh Ohrt Pahl Pm Pearson Pei Plamondon Pope Preece Quinn Reichenbach Reinberger Rice

Rinehard Ritzel **Riviere** Rocco Rose Rosenbury Rozen Ruppert Saleh Smai Scheklinski-Glück Schwarz Seemann Sheffield Sheridan Shi Simons Simonson Smith (David) Smith (Joseph) Smith (Mark D.) Smith (PD) Sofrin Song Stevens Su Sues Suzuki Swegle Tarbell Tennant Thomas Thomsen Ting Tournemine Tünnissen van Doormaal Walker Wang (Lian-Qiao) Wang (Shuangjin) Watson

Weerheijm Welch Wesevich Whiting Whitney Wiren Woodson Yarnaguchi Young Zhang (F) Zhang (F) Zhang (Shoubao) Zhang (Xinle) Zhang (Ya-Dong) Zhou (Fengjun)

NATO

Absil Akers **Bowles** Cesare Crawford Frank Goode Gran Hookharn Kodde Koik Lavelle Lewis (Barbara) Lewis (Brett) Malvar Marchand Murray Oakley Oswald Patterson Plamondon Plenge Renick Riha

Rinehart Romander Senseny Smith Sues Thacker Trundle Twisdale van Dongen Verbeek Weerheijm Wesevich Wu Zimmerman